
Electronic version of the article printed in: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2002:

Biometric Hash based on Statistical Features of Online Signatures

Claus Vielhauer1,2, Ralf Steinmetz1, Astrid Mayerhöfer3

1 – Technical University Darmstadt – Institute for Industrial Process- and System Communications
Merckstrasse 25, D-64283 Darmstadt, Germany

2 – Platanista GmbH
Pankratiusstrasse 7, D-64289 Darmstadt, Germany

3 – Fraunhofer IPSI
Dolivostrasse 14, D-64287 Darmstadt, Germany

{Claus.Vielhauer, Ralf Steinmetz}@KOM.tu-darmstadt.de, Astrid.Mayerhoefer@ipsi.fraunhofer.de

Abstract

This paper presents a new approach to generate
biometric hash values based on statistical features in
online signature signals. Whilst the output of typical
online signature verification systems are threshold-based
true-false decisions, based on a comparison between test
sample signals and sets of reference signals, our system
responds to a signature input with a biometric hash
vector, which is calculated based on an individual
interval matrix.

Especially for applications, which require key
management strategies (e.g. e-Commerce, smart cards),
hash values are of great interest, as keys can be derived
directly from the hash value, whereas a verification
decision can only grant or refuse access to a stored key.
Further, our new approach does not require storage of
templates for reference signatures, thus increases the
security of the system.

In our prototype implementation, the generated
biometric hash values are calculated on a pen-based
PDA and used for key generation for a future secure data
communication between a PDA and a server by
encryption. First tests show that the system is actually
able to generate stable biometric hash values of the users
and although the system was exposed to skilled forgeries,
no test person was able to reproduce another subject’s
hash vector. During tests, we were able to tune the
system to a FAR of 0% at a FRR level of 7.05%.

1. Introduction

Analysis of online handwriting analysis is a research
subject since many years and besides the handwriting
recognition, writer verification has been identified as a
major application area. Verification systems require two
parameters (actual test sample and a reference data set)

and respond with a binary result (verified or not). On the
problem of how to decide upon the similarity between the
test sample and the reference, many approaches have
been published. Typically, they are either based on
statistical function or parameter comparison [1] or neural
networks [2]. In order to identify a writer with these
technologies, the system will need to compare an actual
test signal against a database of all registered users, thus
leading to a large number of verification processes in
large environments. Our system presents an approach to
generate a biometric hash function, which returns a vector
of 24 elements, representing a hash value of the online
signature, upon entering the actual test signature signals
and an interval matrix (IM), which is individually
obtained during enrollment.

In the following chapters, we first give an overview of
the system. Then the 24 feature parameters, that are
extracted from the signal input, are presented and the
Interval Matrix is defined in chapter 4. The following
chapter deals with the problem of how to determine
tolerance factors, while in chapter 6, we describe the
calculation of the biometric hash value. Chapter 7
presents our test results while chapter 8 concludes this
paper and shows areas of future work.

2. System Overview

Data acquisition of our system is performed on a
digitizer tablet or a pen-sensitive computer display, like
the ones included in pen-based PDAs. Writing position
signals x(t) and y(t) are sampled as well as the binary
pen-up/pen-down signal p0|1(t). Although the discrete
writing pressure signal p(t) has been identified as a
relevant feature for writer verification [3], our system
limits to the binary representation, as most PDAs do not
provide discrete pressure information. During Feature
Extraction, 24 parameters are being calculated from the

Electronic version of the article printed in: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2002:

input sample, which are then computed in the 24
component hash vector by interval mapping, see figure 1
System overview.

x(t)
y(t)

p0|1(t)

24

Parameter

Data Aquisition Feature Extraction

Offset (Ω)

Interval
Length ∆I

Interval
Matrix (IM)

Hash Vector

h1
.
.
.

h24

Interval Mapping

Figure 1. System overview

The system is implemented on a Palm Vx PDA based
on a Motorola 68328 CPU clocked at 20 MHz and 8
MBytes of RAM.

3. Feature Parameters

From the physical input functions x(t), y(t) and p0|1(t),
the following 24 statistical parameters ni (i=1..24) are
calculated during feature extraction:

Table 1. Feature parameters extracted from the
online signature

No. Parameter
Name

Description

1 NStrokes Number of continuous pen-down
sequences (strokes)

2 TTotal Duration of the complete writing
process in ms

3 NSamples Number of samples for the
complete writing process

4 NExtrema Sum of all local Minima and
Maxima in writing signals x(t) and
y(t)

5 LAspectRatio Aspect ratio of x/y bitmap * 100
6 LTPenDown/TPenUp Ratio of pen-down and pen-up

duration for complete writing
process * 100

7 Ax Integrated Area covered by the x-
writing signal for the complete
writing process

8 Ay Integrated Area covered by the y-
writing signal for the complete
writing process

9 vx Average of the absolute writing
velocity in x-direction

10 vy Average of the absolute writing
velocity in y-direction

11 ax Average of the absolute writing
acceleration in x-direction

12 ay Average of the absolute writing
acceleration in y-direction

13 (xmax-xmin) /
TTotal

Effective average writing velocity
in x-direction

14 (ymax-ymin) /
TTotal

Effective average writing velocity
in y-direction

15-
19

Ax,Segment 1 -
Ax,Segment 5

Ax, Segment i for the I-th segment of
the equidistantly partitioned x-
writing signal, i ∈ [1..5]

20-
24

Ay,Segment 1 –
Ay,Segment 5

Ay, Segment i for the i-th segment of
the equidistantly partitioned y-
writing signal, i ∈ [1..5]

As the process of interval mapping is implemented in
integer arithmetic, all ratios are computed in 2-digit
precision and then transposed by 2 magnitudes.

All feature parameters except Ax, Segment i and Ax, Segment i
are calculated on a global basis, taking the sampled
features over the entire writing process into account.
Segmentation of online signatures into local features, e.g.
on a stroke level, can lead to significant improvement in
verification results [4], therefore we decided to include
local features in the parameter set. For the segmentation
of those two local feature classes, we divide the complete
input signals x(t) and y(t) in 5 equal-length part signals
and apply integration over the pen position signals x(t)
and y(t), thus leading to feature parameters number 15-19
and 20-24 respectively.

Although a wider number of statistical parameters can be
found [5], we limit this approach at this stage to the
values listed, as our goal the application on PDA
computers with less sophisticated sampling devices and
limited computation performance.

4. Determination of the Interval Matrix

The Interval Matrix (IM) is a matrix of dimension
(NParameters x 2), which is individually calculated for each
user during the enrollment process. The enrollment is
based on a transitivity based enrollment strategy
presented in [6], with a resulting reference set size set to 4
samples. Considering the 24 feature parameters that are
calculated in our system, IM can be written as follows:

Ω

Ω
Ω

∆

∆
∆

=

24

2

1

24

2

1

...
,
...
,
,

...
I

I
I

IM

where ∆Ii is the interval length of an interval [ILow..IHigh]
and Ωi, the interval offset, which are calculated for each
parameter value ni,j (i being the reference number 1..24
and j being the sample number 1..4) of the reference

Electronic version of the article printed in: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2002:

sample j as follows. The extended interval length ∆Ii is
computed based on the following intervals:

Initial interval:
[IInitLow .. IInitHigh] = [MAX(ni,j) .. MAX(ni,j)]

Extended interval:
[ILow .. IHigh] = [IInitLow*(1-ti) .. IInitHigh*(1+ ti)]

with ti being the tolerance factor to extend the interval
length. This factor has been determined by statistical
testing of authentic writing samples against the above
intervals and averaging standard deviations, which will be
explained in the following chapter. Considering the fact
that all parameters are of non-negative integer type and
test values will be rounded accordingly, the effective
interval length ∆Ii can be written to

∆Ii = IHigh+ 0.5 – (ILow- 0.5) = IHigh – ILow + 1

Whereas we define the interval offset value Ωi as

Ωi = ILow MOD ∆Ii

5. Determination of the tolerance value table

The tolerance value for each feature was determined
during a test, where for each of the 11 test subjects, 5
different writing semantics (signature, numeric code,
passphrase, arbitrary word and symbol) were tested
against authentic enrollments of the same kind. For all
determined feature parameters not being within the
interval boundaries, the absolute distance to the interval
borders was averaged to µi. The maximum deviation for
each individual parameter was limited to 20%, values
exceeding this threshold were considered as statistically
exceptional deviations and not included in µi. For the
determination of IM as described in the previous chapter,
we then set µi=ti for each of the i features, thus leading to
the following tolerance value table. Each column lists the
tolerance values for each of the 11 test subjects in percent
and each row represents one of the 24 feature parameter.
The rightmost column shows the tolerance average over
all subjects, where values “A” identify tolerances greater
than 20%, which are excluded from averaging.

Table 2. Tolerance value table

6. Calculation of the biometric hash vector

The biometric hash values are calculated by interval
mapping of each single feature parameter of a given
writing sample against an Interval Matrix, resulting in a
24 component hash vector. Due to the nature of the
determination of the interval matrix, all possible values v1
and v2 within the extended interval [ILow..IHigh] as defined
in the previous chapter fulfill the following condition:

For all v1, v2 ∈ [ILow .. IHigh]:

∆

Ω−
=

∆

Ω−

i

i

i

i

I

v

I

v)()(21

and

For all v1 ∈ [ILow .. IHigh], v2 ∉ [ILow .. IHigh]:

∆

Ω−
≠

∆

Ω−

i

i

i

i

I

v

I

v)()(21

That is, all given v1 and v2 within the extended interval
lead to identical integer quotients, whereas values below
or above the interval border lead to different integer
values. Thus, we write the hash function for each feature
parameter fi for the i=1..24 feature parameter values to:

hi(fi, ∆Ii, Ωi) =

∆

Ω−

i

ii

I

f)(

7. Test Results

The test environment consists of 2 test blocks (test A and
test B), each involving 10 subjects. In test A, the subjects
performed an enrollment (calculation of IM) and an
additional verification sample. Further, each person was

Electronic version of the article printed in: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2002:

asked to forge the signatures of the remaining persons. In
order to ensure a good quality of the forgeries, a hardcopy
of the original signature was made available and the
maximum training time was limited to 15 minutes.
In Test B, each person again had been asked to provide a
verification sample, plus a forgery for each of the other
users. Test B was performed at least a week after Test A.
Our system does not generate a true-false response like
signature verification systems in general therefore, in
order to allow comparison of our new approach with
other systems, we define error rates as follows:

- False Rejection (FR) error is given, if an authentic
individual fails to reproduce the complete biometric
hash vector, that is represented by the user’s
individual IM

- False Acceptance (FA) error occurs, if a forger
manages to reproduce a biometric hash vector
belonging to another person

Although false acceptances did occur in neither of the
tests, the average FRR increased from 3,7% in test A to
10,4% in test B.

Table 3. FAR/FRR during test A
ID AL AM MM FR EH YS JD EF ST LF
FAR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
FRR 8% 0% 21% 0% 0% 0% 0% 4% 4% 0%

Table 4. FAR/FRR during test B
ID AL AM MM FR EH YS JD EF ST LF
FAR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
FRR 8% 0% 21% 8% 12% 21% 12% 17% 12% 4%

Table 5. Average FAR/FRR
ID AL AM MM FR EH YS JD EF ST LF
FAR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
FRR 8% 0% 21% 4% 6% 10% 6% 10% 8% 2%

The average error rates are resulting to FAR=0%,
FRR=7.05%.

8. Conclusions and future work

Our new approach of generating hash values from online
signatures generates individual patterns for users, based
on an actual writing sample and reference data,
represented by an interval matrix. This functionality is
attractive especially for applications where key
management strategies are required, as keys can directly
be generated from the system response, the biometric
hash vector. Another advantage is the fact, that no
reference samples are being stored during the enrollment
process, which can avoid replay attacks of individuals
being in possession of the reference data, thus increases
the security for the overall biometric system. First test

results have proven that the parameters selected represent
individual handwriting, especially since skilled forgeries
were used to determine the FAR.
However, the number of subjects was limited and will
need to be increased in future test scenarios to allow
statistical safe conclusions.
A biometric hash, which can be generated without
individual references like the IM, would have a wide
number of applications and could offer a great level of
security. We will perform further research to validate the
possibility of finding appropriate features and global
values for the Interval Matrix in order to achieve such
functionality based on the approach presented.

9. Acknowledgements

This paper was supported by the work of Michael
Haisch during his 2001 master thesis at T.U. Darmstadt:
“Design and development of techniques to secure online
handwriting reference data for user authentication on
mobile devices”

11. References

[1] R. Plamandon, G. Lorette, Automatic Signature
Verifictaion and Writer Identification – the State of the
Art, Pergamon Press plc., Pattern Recognition, 22, 2:107-
131, 1989

[2] R. Plamandon, F. Leclerc, Automatic Verifictaion and
Writer Identification: The State of the Art 1989-1993,
International Journal of Pattern Recognition and Artificial
Intelligence, 8:643-660, 1994

[3] Y. Sato, K. Kogure, Online Signature Verification
based on Shape, Motion and Handwriting Pressure,
International Conference on Pattern Recognition (ICPR),
2:823-826, Munich, 1992

[4] B. Wirtz. Stroke-Based Time Warping for Signature
Verification. International Conference on Document
Analysis and Recognition (ICDAR), 1, 179-182, 1995

[5] S. Hangai, S. Yamanaka, T. Hamanoto, On-line
signature verification based on altitude and direction of
pen movement, International Conference on Multimedia
(ICME), 1:489-492, 2000

[6] C. Vielhauer, R. Steinmetz, Transitivity Based
Enrollment Strategy for Signature Verification,
International Conference on Document Analysis and
Recognition (ICDAR), 1:1263-1266, 2001

Electronic version of the article printed in: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2002:

12. Errata

This electronic version contains the following corrections
compared to the printed version in the Proceedings of the
IEEE International Conference on Pattern Recognition
(ICPR), Vol. 1, pp. 123 - 126, ISBN 0-7695-1696-3,
2002:

Second equation in section 4 was:
[IInitLow .. IInitHigh] = [MAX(ni,j) .. MAX(ni,j)]

has been corrected to:

[IInitLow .. IInitHigh] = [MIN(ni,j) .. MAX(ni,j)].

Section 4, third paragraph, second sentence was:
“Considering the fact that all parameters are of integer
type and test values will be rounded accordingly, the
effective interval length ∆Ii can be written to…”,

and has been corrected to: “Considering the fact that all
parameters are of non-negative integer type and test
values will be rounded accordingly, the effective interval
length ∆Ii can be written to…”.

Second equation in section 6 was

For all v1,v2 ∈ [ILow .. IHigh]:

∆

Ω−
≠

∆

Ω−

i

i

i

i

I

v

I

v)()(21

and has been corrected to:

For all v1 ∈ [ILow .. IHigh], v2 ∉ [ILow .. IHigh]:

∆

Ω−
≠

∆

Ω−

i

i

i

i

I

v

I

v)()(21

